
A PARALLEL PROCESSING APPROACH
TO SOFTWARE FAULT TOLERANCE

W. Kent F u c h

Computer Systems Group
Coordmtcd Science Laboratory

University of Illinois
1101 W. Springfield Ave.

Urbana, IL 61801

(217) 333-9731

Abstract- The h u e of concurrent detection and recovery from design errors in the
software and physical failures in the hardware of paraliel procssor systems is considered in
this paper. In contrast to classical N-Verhn programming and recovery block approaches to
software fault tolerance, a specification-based approach to control and data structure verification
is presented. The techniques use the hardware redundrrncy inherent in parallel processing
systems to provide concurrent error detection and recovery.

Xey Words- reliable software. concurrent error detection. fault tolerance

(bASA-Cb-181047) A PARALLEL F E G C L S S U G N87-7C457
B l P R O A C i i 30 SCF'IWERE EAOLI X C l E E A P C E
(lllinois Univ.) 5 F A v a i l : h31S

Unclas
00/61 0 0 7 9 3 5 5

This research was supported by the National Aeronautics and Space Adminisration (NASA) under Contract NASA
NAG 1-613 and by the Joint Scrvica Electronics Program under Contract N00014-844-0149,

-

ICCD 86 Paper Summary 1

I. INTRODUCI'ION

There is an ever increasing need for high-performance reliable computation in many

contexts of computer system application. In response to this need a large number of industrial

and academic researchers have made significant contributions to the synthesis and analysis of

techniques for enforcing fault-tolerant computing. Advances have been made both in the areas

of hardware and software fault tolerance. However, there is a distinct lack of research

concerning an integrated approach to software and hardware appropriate for parallel processing

systems. Software fault tolerance has primarily consisted up to the present time of either the

N-version programming or the recovery Mock approach. N-version programming is a method of

enforcing design diversity and therefore error detection and recovery through N independently

coded versions of a program 111. The recovery block approach applies an acceptance test to a

primary routine for purposes of error detection. A failure to pass the acceptance test results in

a transfer of control to an alternate routine for attempted recomputation of the desired function

121.

Both of these techniques have been used to provide for toleration of both hardware and

software errors in distributed environments [3.41. while little concern has been given as to how

software fault tolerance can be achieved in tightly-coupled parallel processing systems 15.61.

Unfortunately, the application of N-version programming to hardware and software fault

tolerance results in full replication of both hardware and software. while the recovery block

technique necessitates the derivation of comprehensive acceptance tests. which is difEicult for

many computational tasks.

This paper introduces a specification-based approach to control and data structure

verification which is appropriate for software and hardware fault tolerance in tightly coupled

parallel processing systems. The techniques use the hardware redundancy inherent in a

multiprocessor system to provide concurrent error detection and recovery. The focus of the

ICCD 86 Paper Summary 2

paper's contributions concern the concurrent detection of software design errors and hardware

physical failures. Techniques for recovery concurrently under investigation also presented in

summary.

11. RELIABLE PARALLEL COMPUTATION

A . S + m - B a d C k k -

The use of formal specifications is a significant aid in the detection of errors in the design

of software. Several, formal specification languages have been developed specifically for

software verification [7.8.1]. In this paper we propose the use of formal specifications to derive

check structures which are used to concurrently monitor the validity of parallel software

structures. The check structures function as redundant processes in the parallel computing

environment whose control variables are concurrently compared with that of the executing

nonredundant code. The nature of the objective in deriving the check structures is that they

will provide a means of comprehensive error detection with significantly less development

effort. performance penalty. a d hardware allocation than classical fault tolerant schemes. Two

specifk examples of specification-based check structures are presented in summary below.

The use of external monitors to detect errors in control flow have recently been developed

and implemented [9,10]. These techniques provide low-cost methods of hardware error

detection. Our goal in this section of the paper will be to demonstrate that similar techniques

can be used in parallel softwar: to detect both design errors as well as hardware failures. Our

approach is to use formal specification of the initial control, such as recently described by

Lichtman [111. with concurrent comparison of the specified control structure with control

variables stored in the shared memory of the parallel processor architecture. The initial formal

specification provides for software error detection, while the use of distinct processors for

I O 86 Paper S i m j 3

execution of the no&edundant parallel code and for comparison with the control check

structure provides for detection of hardware failures.

The integrity of data structures can also be provided for through a specification-based

approach. Specification of abstract data types has been studied for purpo& of program testing

in recent literature [12]. Our research results incorporates data type specification with

specification of valid data structures. Errors due to design and physical failure are detected by

means of ucce5s path verifzcutkm and comparison with the specification check structure.

L. ~

111. CONCLUSION

The specification-based approach to control and data structure verification provides an

alternative technique for software and hardware concurrent error detection in parallel

processing environments. Current work concerns the implementation of recovery strategies from

detected errors and the analysis of memory and performance costs for the proposed techniques.

ICCD 86 Paper Summary 4

REFERENCES

A. Avizienis, “The N-Version Approach to Fault-Tolerant Software.” IEEE Trans. on
Software Eng.. vol. SE-11, pp. 1491-1501. December 1985.
B. Randell. “System Structure €or Fault Tolerance.” IEEE Trans. on Software Eng.. vol.

S. V. Mukam and A. Avizienis, “An Event-Synchronized System Architecture for In-
tegrated Hardware and Software Fault-Tolerance,” Roc. of the Fourth Inter. Conf. on
Distributed computing Systems, pp. 357-365. May 1984.
K. H. Kim. “Distributed Execution of Recovery Blocks: Approach to Uniform Treatment
of Hardware and Software Faults,” in Roc. IEEE 4th I d . Gmf. Distributed Comput. Syst.,
San Francisco. CA. pp. 526-532, May 14-18.
K. H. Kim and C. V. Ramamoorthy. “Failure-Tolerant Parallel Programming and Its Sup-
porting System Architecture,” Roc. of AFIPS. pp. 413-423.1976.
Y. H. Lee and K. G. Shin, “Design and Evaluation of a Fault Tolerant Multiprocessor Us-
ing Hardware Recovery Blocks,” IEEE Trans. Cornput., vol. C-33. pp. 113-124. Feb. 1984.
J. V. Guttag and J. J. Norning, “An Introduction to the Larch Shared Language,” in In-
f m . Recessing ’83 Bot. IFIP Congr., Paris, France, pp. 809-814, Sept. 19-23,1983.
R. A. Kemmerer, “Testing Formal Specifications to Detect Design Errors,” IEEE Trans. on
Software Eng.. vol. SE-11, pp. 32-42, January 1985.
J. P. Shen and M. A. Schuette. “On-Line Self-Monitoring Using Signatured Instruction
Streams.” Roc. Int. Test Conf... pp. 275-282. Nov. 1983.
M. Namjoo. “CERBERUS-16: An Architecture for a General Purpose Watchdog Proces-
sor.” Roc. Symp. Fa& Tolerant Comput.. pp. 17-20. 1983.

SE-1. pp. 220-232. J u ~ . 1975.

[ll]

1121

Z. L. Lichtnan. “Generation and Consistency Checking of Design and Program Struc-
tures,” IEEETrans. on Software Eng.. vol. SE-12. pp. 172-181, January 1986.
I. J. Hayes, “Specijication Directed Module Testing,” IEEE Trans. on Software Eng.. vol.
SE-12. pp. 124-133, January 1986.

